Received 17 January 2005 Accepted 24 January 2005

Online 29 January 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ai-Yun Fu,^{a,b}* Da-Qi Wang^b and De-Zhi Sun^b

^aDepartment of Chemistry, Dezhou University, Dezhou, Shandong 253023, People's Republic of China, and ^bDepartment of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China

Correspondence e-mail: aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.044 wR factor = 0.074 Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethylenediammonium diaquabis(ethylenediamine- $\kappa^2 N, N'$)zinc(II) bis(pyridine-2,6-dicarboxylato- κ^3, O, N, O')zincate(II) dihydrate

In the title compound, $(C_2H_{10}N_2)[Zn(C_2H_8N_2)_2(H_2O)_2]$ - $[Zn(C_7H_3NO_4)_2]_2 \cdot 2H_2O$, the Zn atom (site symmetry 2/m) in the $[Zn(C_2H_8N_2)_2(H_2O)_2]^{2+}$ cation is six-coordinated by four N atoms from bidentate ethylenediammonium molecules and two water O atoms. The Zn atom (site symmetry 2) in the $[Zn(C_7H_3NO_4)_2]^{2-}$ anion is six-coordinated by four O atoms and two N atoms from two tridentate pyridine-2,6-dicarboxylate ligands. An uncoordinated ethylenediammonium cation and two water molecules are also present in the structure. The crystal packing is stabilized by $O-H \cdots O$ and $N-H \cdots O$ hydrogen bonds, forming a three-dimensional network.

Comment

The title compound, (I), $(C_2H_{10}N_2)[Zn(C_2H_8N_2)_2(H_2O)_2]$ -[Zn(C₇H₃NO₄)₂]₂·2H₂O, (where C₂H₈N₂ is ethylenediamine, L1, C₂H₁₀N₂ is protonated ethylenediamine, H₂L1, and C₇H₃NO₄ is pyridine-2,6-dicarboxylate, L2), consists of a [Zn(C₂H₈N₂)₂(H₂O)₂]²⁺ cation, a C₂H₁₀N₂²⁺ cation, two [Zn(C₇H₃NO₄)₂]²⁻ anions and two uncoordinated water molecules (Fig. 1).

The Zn1 atom in the $[Zn(C_7H_3NO_4)_2]^{2-}$ anion is six-coordinated by four O atoms and two N atoms from two L2 ligands. The complete anion is generated by twofold symmetry. The *trans* angles of the ZnN₂O₄ octahedron are 169.77 (18), 152.87 (9) and 152.87 (9)°. The *cis* angles are in the range 77.61 (11)–110.08 (10)°, indicating a rather distorted octahedral geometry. The average Zn–O separation of 2.212 (3) Å (Table 1) is in the expected range for Zn–O(carboxyl) bond lengths.

The central Zn2 atom in the $[ZnL1_2(H_2O)_2]^{2+}$ cation has a distorted octahedral geometry, formed by four N atoms of the two bidentate *L*1 ligands and two O atoms of water ligands. Here, the complete species is generated by inversion symmetry. The chelate N-Zn1-N bite angle for the *L*1 ligand is 81.75 (15)° and the remaining *cis* angles in the Zn2

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the component species in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) 1 - x, y, -z; (ii) 1 - x, 1 - y, 1 - z; (iii) -x, 1 - y, 1 - z.]

octahedron span the range 90.0–98.25 (15)°. The average Zn-N bond length of 2.114 Å (Table 1) is comparable with the value of 2.181 Å observed in the $[Zn(en)_3]^{2+}$ cationic complex (en is ethylenediamine) described earlier by Fu et al. (2004). The elongated displacement ellipsoids for atoms C8 and C9 possibly indicate unresolved positional disorder of the L1 species about the (020) mirror plane. The very short C8-C9 bond length of 1.333 (7) Å is probably an artefact of this disorder.

All the N–H groups of the L1 ligand and the H_2L1 cation, and the O-H groups of the uncoordinated water molecules, are involved in hydrogen bonds (Table 2). The O atoms of the pyridine-2,6-dicarboxylate ligands serve as acceptors, resulting in the formation of a three-dimensional hydrogen-bond network (Table 2 and Fig. 2). Atoms H3A and H3B are involved in bifurcated hydrogen bonds.

Experimental

ZnSO₄ (0.5 mmol) was dissolved in distilled water (20 ml), and an aqueous mixture (30 ml) of H₂L2 (0.75 mmol), NaOH (0.5 mmol) and ethylenediamine (0.5 mmol) was added dropwise at 333 K. The mixture was stirred for 6 h and part of the solvent was evaporated in a rotary vacuum evaporator. The resulting solution was filtered and allowed to stand in air for about 6 weeks. Large colourless block-like crystals of (I) were obtained. Analysis calculated for C34H46N10-O₂₀Zn₃: C 36.76, H 4.17, N 12.61%; found: C 36.57, H 4.09, N 12.55%.

Figure 2

The crystal packing of (I), showing the $O{-}H{\cdots}O$ and $N{-}H{\cdots}O$ hydrogen-bond interactions as dashed lines.

Crystal data

$(C_2H_{10}N_2)[Zn(C_2H_8N_2)_2(H_2O)_2]$ -	$D_x = 1.749 \text{ Mg m}^{-3}$
$[Zn(C_7H_3NO_4)_2]_2 \cdot 2H_2O$	Mo $K\alpha$ radiation
$M_r = 1110.92$	Cell parameters from 1128
Monoclinic, $C2/m$	reflections
a = 14.187 (6) Å	$\theta = 2.6-21.4^{\circ}$
b = 19.218 (8) Å	$\mu = 1.79 \text{ mm}^{-1}$
c = 8.139 (4) Å	T = 293 (2) K
$\beta = 108.061 \ (7)^{\circ}$	Block, colourless
$V = 2109.7 (16) \text{ Å}^3$	$0.42 \times 0.27 \times 0.14 \text{ mm}$
Z = 2	

Data collection

Bruker SMART CCD area detector	2225 independent reflections
diffractometer	1306 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.053$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.5^{\circ}$
(SADABS; Bruker, 1997)	$h = -17 \rightarrow 17$
$T_{\min} = 0.521, \ T_{\max} = 0.788$	$k = -24 \rightarrow 18$
6170 measured reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.044$	independent and constrained
$wR(F^2) = 0.074$	refinement
S = 1.00	$w = 1/[\sigma^2(F_0^2) + (0.0166P)^2]$
2225 reflections	where $P = (F_0^2 + 2F_c^2)/3$
173 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Selected bond lengths (Å).

Zn1-N1	1.999 (3)	Zn2-N3	2.103 (4)
Zn1-O3	2.162 (3)	Zn2-N2	2.125 (4)
Zn1-O1	2.262 (3)	Zn2-O5	2.253 (5)

Table 2		
Hydrogen-bond	geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H2A\cdots O2^{iv}$	0.90	2.43	3.162 (4)	139
$N2-H2B\cdots O2^{v}$	0.90	2.43	3.162 (4)	139
$N3-H3A\cdotsO1^{v}$	0.90	2.42	3.256 (3)	156
$N3-H3A\cdots O2^{v}$	0.90	2.43	3.166 (4)	139
$N3-H3B\cdotsO1^{iv}$	0.90	2.42	3.256 (3)	156
$N3-H3B\cdots O2^{iv}$	0.90	2.43	3.166 (4)	139
N4 $-$ H4 A ···O6 ^{vi}	0.89	1.98	2.839 (6)	162
N4 $-$ H4 B ···O4 ^{vii}	0.89	1.91	2.784 (4)	169
N4 $-$ H4 C ···O4 ^{viii}	0.89	1.91	2.784 (4)	169
$O5-H11\cdotsO1^{iv}$	0.873 (10)	2.09 (2)	2.899 (3)	155 (4)
$O6-H12\cdots O2^{iv}$	0.876 (10)	1.979 (13)	2.838 (4)	167 (4)

Symmetry codes: (iv) x, y, z + 1; (v) x, -y + 1, z + 1; (vi) -x + 1, -y + 1, -z + 2; (vii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + 1$; (viii) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

After location of the H atoms in difference maps, the water O–H distances were restrained to 0.90 (1) Å and their $U_{iso}(H)$ values were allowed to refine. All other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H =

0.93–0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$, or with N–H = 0.90 Å and $U_{iso}(H) = 1.2U_{eq}(N)$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997a); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997a); molecular graphics: *SHELXTL* (Sheldrick, 1997b); software used to prepare material for publication: *SHELXTL*.

The authors thank the Science and Technology Office of the city of Dezhou, Shandong Province, for research grant No. 030701.

References

- Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fu, A.-Y., Wang, D.-Q. & Yu, T. (2004). Acta Cryst. E60, m1736-m1737.
- Sheldrick, G. M. (1997a). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). *SHELXTL*. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.